
GemFI: A Fault Injection Tool for Studying the
Behavior of Applications on Unreliable Substrates

Konstantinos Parasyris∗ Georgios Tziantzoulis† Christos Antonopoulos‡ Nikolaos Bellas§
∗‡§Dept. of Electrical and Computer Eng. ∗‡§I.RE.TE.TH. †Computer Science Dept.

University Of Thessaly Centre for Research and Technology, Hellas Northwestern University
Volos, Greece Volos, Greece Chicago, U.S.A.

E-mail: ∗koparasy,‡cda,§nbellas@inf.uth.gr, †georgiostziantzioulis2011@u.nortwestern.edu

Abstract—Dependable computing on unreliable substrates is
the next challenge the computing community needs to overcome
due to both manufacturing limitations in low geometries and the
necessity to aggressively minimize power consumption. System
designers often need to analyze the way hardware faults manifest
as errors at the architectural level and how these errors affect
application correctness.

This paper introduces GemFI, a fault injection tool based on
the cycle accurate full system simulator Gem5. GemFI provides
fault injection methods and is easily extensible to support future
fault models. It also supports multiple processor models and
ISAs and allows fault injection in both functional and cycle-
accurate simulations. GemFI offers fast-forwarding of simulation
campaigns via checkpointing. Moreover, it facilitates the parallel
execution of campaign experiments on a network of workstations.

In order to validate and evaluate GemFI, we used it to
apply fault injection on a series of real-world kernels and
applications. The evaluation indicates that its overhead compared
with Gem5 is minimal (up to 3.3%), whereas optimizations such
as fast-forwarding via checkpointing and execution on NoWs can
significantly reduce simulation time of a fault injection campaign.

Keywords-fault-injection; simulation; cycle accurate; full sys-
tem

I. INTRODUCTION

Fault injection is a fundamental experimental method for
assessing the dependability and identifying weaknesses in the
design of fault tolerant systems. Fault injection can also be
used to simulate execution on unreliable systems, to study
the behavior of applications under the presence of faults, or
evaluate the coverage of a software fault tolerance mechanism.

Different fault injection techniques are appropriate for dif-
ferent phases of the design cycle of systems. Simulator-based
fault injection can be used early in the design cycle, software
and pin level fault injection require the availability of a system
prototype. Most fault injection tools target a specific system
using customized user interfaces. Extending such infrastruc-
tures is unrealistic, limiting the tool’s application domain.

In this paper we introduce GemFI, a cycle accurate fault
injection tool based on the Gem5 simulator [1]. A primary ob-
jective of the tool is to enable fault injection based on different
fault models and on systems with various configurations. We
target full system simulations to evaluate the impact of faults
on the complete system stack, from the the architectural level

up to applications. A variety of different system configura-
tions and architectures can be supported without affecting the
implementation of fault injection in GemFI.

GemFI supports the generic behavioral-level fault model for
the register file within a processor [2]. The model describes
the behavior of micro-architectural components of a generic
processor under the presence of faults. The fault model is
abstracting the low-level fault effects to the micro-architectural
level. It can be used to simplify and accelerate fault injection
campaigns – compared with injection on RTL models –
without sacrificing accuracy of the obtained results.

GemFI can support any processor model and ISA available
in the Gem5 simulator. For the purposes of this study we use
the Alpha ISA1. To provide more accurate results, GemFI in-
jects faults on the CPU while simulating both user- and kernel-
level instructions and models a complete system including
CPU, memory and the peripheral devices. The tool includes a
number of performance enhancing features: checkpointing and
restart functionality and the ability to launch fault injection
simulation campaigns on a network of workstations (NoW).

To evaluate GemFI, we inject with faults a number of codes
from different application domains with diverse characteristics.
We focus on correlating the effects of faults in different
architectural components with the particular characteristics of
each application and its inherent error tolerance. Moreover, we
study the relation of the timing of faults during the application
life with the effect on the correctness of results.

The remainder of the paper is organized as follows. An
overview of Gem5 simulator is given in Section II. Section III
discusses the internal design and implementation of the tool
and its usage. Section IV describes our experimental method-
ology and outlines the results of the experimental validation of
the simulator. Section V focuses on the quantitative evaluation
of GemFI performance. Section VI discusses previous work.
Finally, Section VII concludes the paper.

II. THE GEM5 SIMULATOR

Gem5 is a popular open-source system simulator. It provides
a modular platform for computer system-level architecture

1GemFI also supports Intel x86 ISA, however we discuss the Alpha ISA
implementation due to the mature support of the Alpha architecture by GEM5.

1



research, encompassing system-level architecture as well as
processor micro-architecture.

Object oriented design enhances the flexibility of Gem5.
The ability to construct configurations from independent ob-
jects facilitates multicore and multi-system design. Moreover,
Gem5 provides four different CPU models, each of them rep-
resenting a different point in the speed vs simulation accuracy
trade-off. Atomic Simple is a single IPC CPU model. Timing
Simple is similar but also simulates the timing of memory
references. InOrder is a pipelined in order CPU. Finally, O3
is a pipelined out-of-order CPU model. Gem5 also supports
two memory system models: classic and ruby. The classic is
fast and easily configurable, while the ruby model provides a
flexible infrastructure capable of accurately simulating a wide
variety of cache coherence memory systems.

Gem5 operates in two modes: System Call Emulation (SE)
and Full System (FS). In SE mode applications execute on
simulated “bare metal”. Whenever the program executes a
system call, Gem5 traps and emulates the call usually by
passing it to the host OS. Currently there is no thread scheduler
in SE mode. Therefore, threads are statically mapped to a
core, hindering its use with multi-threaded applications. FS
mode offers an environment for running an operating system
(OS) on top of the simulator. There is support for interrupts,
exceptions and I/O devices. Applications are executed under
the control of the OS.

Gem5 supports a number of ISAs, including Alpha, MIPS,
ARM, Power, SPARC and x86. The simulators modularity
allows these different ISAs to be easily implemented on top of
the generic CPU models and the memory system. Alpha is the
most maturely supported ISA, with ARM and x86 following.

III. GEMFI DESIGN AND IMPLEMENTATION

We extended Gem5 with fault injection capabilities, follow-
ing the General Processor fault model described in [2]. The
result, GemFI, is a configurable tool for studying the effect of
faults in a processor.

GemFI was developed using C++ and Python. It fully
supports the Alpha and Intel x86 ISAs. Supporting more
instruction sets is rather straightforward, since the implemen-
tation of GemFI is fairly ISA-agnostic. GemFI supports full
system simulation mode as well as the execution of multi-
threaded applications. An architectural overview of GemFI is
depicted in Fig. 1, whereas the following sections discuss its
main features in more detail.

A. GemFI User Interface

GemFI provides an API consisted of two intrinsic functions.
• void fi activate inst(int id) is translated to a pseudo-

assembly instruction. Its successive occurrences toggle
(active/inactive) the manifestation of faults for the spe-
cific process/thread. The executing thread is assigned a
numerical id which can be used as an identifier of the
thread in fault injection configuration.

• void fi read init all() checkpoints the simulation. Upon
restoring from the checkpoint, it resets all the internal

Fig. 1: An architectural overview of GemFI. The red com-
ponents of the architecture demonstrate the possible locations
where faults can be injected, whereas the red ovals represent
applications which use the extended ISA.

information of GemFI, allowing the same checkpoint to
be used as a starting point for multiple experiments with
potentially different fault injection configurations.

On GemFI invocation the user also provides – at command
line – an input file specifying the faults to be injected in the
upcoming simulation. Each line of the input file describes the
attributes of a single fault. Faults are characterized by four
attributes: Location, Thread, Time and Behavior.

1) Location: Fault location specifies the micro-architectural
modules to be targeted for fault injection. The user specifies
the core, the module within the core and finally the specific bit
location to be corrupted. Supported locations include registers
(integer, floating point, special purpose), the fetched instruc-
tion, the selection of read/write registers during the decoding
stage, the result of an instruction at the execution stage, the
PC address and finally memory transactions (load/stores).

2) Thread: The thread attribute allows to selectively inject
faults to specific threads, using the id assigned to the thread
upon execution of fi activate inst(id) as an identifier.

3) Time: Another important aspect of the fault injection
configuration is its timing. Timing is relative to a simulation
milestone, marked by the execution of the fi activate inst.
Faults are scheduled relatively to the number of instructions
already executed, or to the number of elapsed simulation ticks
of the targeted thread.

4) Behavior: The values of the specified faulty location can
be corrupted in following ways:

• by assigning an immediate value provided by the user to
the location.

2



”RegisterInjectedFault Inst:2457 Flip:21
Threadid:0 system.cpu1 occ:1 int 1”

Listing 1: A sample input file to GemFI

#include <m5op.h>
int main(int argc, char ∗argv[]){

int id = 0;
initialize input data();
fi read init all();
fi activate inst(id);
foo();
fi activate inst(id);
}

Listing 2: Modified source code of an application for fault
injection.

• by XORing the running value at this location with a user-
specified constant.

• by flipping the running value at bit locations. Multiple
bit flips are supported by injecting multiple faults on the
same module.

• by setting all bits of the location to a value of 0 or 1.
To emulate the behavior of transient and permanent faults,

the user can define how long the fault is active in terms of
the number of simulation ticks or number of instructions. For
example, a fault injected in the execution stage of the processor
can be injected continuously for the next N instructions (or for
the next N simulation cycles) if so instructed by the user.

B. Simple Example

Listing 1 outlines a user-provided fault configuration ex-
ample. The fault is injected in the 21st bit of register R1 of
the CPU (location), when the application fetches the 2457th

instruction after the initiation of fault injection for this thread
(fi activate inst). The fault is activated for a single instruction
(occ:1) and only for the thread with id equal to 0.

The end user compiles (or cross-compiles) the application
to be tested (Listing 2). Target applications must, at least,
contain one call to initialize fault injection. Afterwards, the
user moves the binaries into the disk image serving as the
virtual disk of GemFI. Using the command line, the user
provides a configuration file (Listing 1) describing all the
faults to be injected in the simulation. After fi activate inst(id)
is called, the thread identifier is stored in the internal data
structures of GemFI. Simulation continues normally, until it
is time for a fault to be injected. At that time, GemFI alters
the state of the target hardware structure according to the fault
specification in the configuration file.

C. GemFI Internals and Implementation

Fig. 2 demonstrates the main abstract steps executed by
GemFI on each simulated served instruction.

Threads that have enabled fault injection are internally
represented as instances of a class (ThreadEnabledFault),

Fig. 2: GemFI functionality on each simulated instruction.

containing all per thread information necessary for fault in-
jection, such as the number of instructions the thread has
executed on each core. Each simulated core has a pointer to a
ThreadEnabledFault object. If the thread executing on the core
has not activated fault injection, the pointer is NULL. When a
thread executes fi activate inst(), GemFI looks in a hash table
to identify whether the specific thread has already activated
fault injection. Threads are identified at the hardware/simulator
level by their unique Process Control Block (PCB) address. If
the thread is not found in the hash table, a new ThreadEnabled-
Fault object is created and the running core is set to point to
that object. On the other hand, if there was already an entry in
the hash table, the invocation of fi activate inst() deactivates
fault injection for the specific thread. The thread is removed
from the hash table, the corresponding ThreadEnabledFault
object is destroyed and the core’s pointer is set to NULL.
During context switches, which are identified by the change
of the PCB address, GemFI checks whether the switched-in
thread has activated fault injection, in order to properly set
the core’s pointer to the thread’s ThreadEnabledFault object.
Monitoring context switches allows GemFI to eliminate the
overhead of checking the fault injection status of the executing
thread in the hash table on each simulated clock tick.

Faults are described in the input file provided by the user at
GemFI command line. The file is parsed at startup and each
fault is inserted to one of five internal queues. Each queue
corresponds to a different pipeline stage.

On each simulation tick, GemFI checks if fault injection
has been enabled for the running thread. In such a case,
it prefetches the corresponding ThreadEnabledFault objects.
Then and for each instruction served at a pipeline stage,
GemFI updates the thread’s data and scans the corresponding
queue for faults targeting the executing thread at the specific
simulation point. Queue entries are sorted according to the

3



Fig. 3: Simple checkpoint-restore mechanism to speedup sim-
ulation campaigns.

timing of each fault. If such a fault is found, the value of the
targeted location is corrupted according to fault’s behavior.

D. Simulation Checkpointing

Checkpointing allows saving the state of a process or a
system at a specific time snapshot and reverting to that later, to
restart the execution from that point if needed. Checkpointing
is necessary in order to avoid losing simulations in case of
unexpected failures. It is particularly useful when simulation
campaigns are executed to non-dedicated networks of work-
stations, a feature supported by GemFI.

Gem5 provides checkpointing, however with limitations.
One method is to switch the simulation from O3 to atomic
simple mode, create the checkpoint, and revert back to O3
mode to continue the simulation. This requires a pipeline flush,
presenting a potential realism loss hazard. The second method
requires simulating the MOESI hammer cache coherency pro-
tocol, which however dramatically increases simulation time.

We used DMTCP (Distributed MultiThreaded Checkpoint-
ing) [3] to checkpoint the state of the Linux process running
the simulator, instead of checkpointing the internal state of
the simulator. A feature of DMTCP is its ability to take
checkpoints either by programmatically invoking checkpoint-
ing from within the process to be checkpointed, or asyn-
chronously, by setting environment variables. The ability to
invoke DMTCP from within the simulator allows us to ex-
ploit the front-end checkpointing mechanism of Gem5, while
altering the checkpointing back-end to use the DMTCP API.

Apart from protecting against unexpected problems in sim-
ulation campaigns, checkpointing can be used to speed-up
simulations. Before starting simulation campaigns, the user
executes one simulation up to the point when fault injection
is activated (including booting of the operating system and
application initialization). Using GemFI’s API the user can
checkpoint the simulation at this point. The saved state is then
used as a starting point for all experiments in the campaign
(Fig. 3). Upon restoring a checkpoint GemFI parses again the
faults configuration file. Therefore, this strategy allows fast-
forwarding of the execution to the checkpoint and spawning of
multiple experiments, with different fault injection configura-

tions from that point on. As a result, the cumulative execution
time of the simulation campaign is significantly reduced, as
we demonstrate in Sec. V.

E. Simulation Campaigns on a Network Of Workstations

GemFI is accompanied by a set of shell scripts which
facilitate launching simulation campaigns on a network of
workstations (NoW). The workstations need to share a network
file-system, in order to store the fault description files of the
experiments, the simulation checkpoints and the output of each
simulation. The main steps for parallel execution of simulation
campaigns on a NoW are the following:

1) The configuration files for all experiments are stored on
a network share.

2) A simulation is executed up to the point fault injection is
activated and the simulator process is checkpointed. The
checkpoint is stored to the share.

3) Each workstation gets a local copy of the checkpoint.
4) Each workstation checks the share for experiments to be

executed. It selects one of the remaining experiments and
executes it locally, starting from the checkpointed state.

5) Simulation results are moved from the workstation back
to the network share.

6) Steps 4-6 are repeated until there are no experiments left.

IV. VALIDATION

In order to validate the functional correctness of GemFI,
we conducted an experimental study using a set of benchmark
applications. Our simulator system was set to simulate a
single core ALPHA CPU coupled with a tournament branch
predictor, a L1 instruction cache and a L1 data cache and as
a L2 cache we used a unified L2 cache.

DCT, is a kernel of JPEG image compression and de-
compression [4]. We applied each kernel on a gray-scale
512X512 image. Jacobi is applied on a diagonally dominant
64X64 matrix. Monte Carlo PI estimates the value of PI
by randomly selecting 105 points within a unit square and
evaluating whether they fall into the inscribed into a circle with
radius one. Knapsack is a solution of the zero one knapsack
combinational problem using a genetic algorithm. We use an
input of 24 items and a weight limit of 500. The Deblocking
filter is a kernel of the AVS video decoding process [5]. We
apply it on a 720X240 pixel image. Canneal is a benchmark
of the PARSEC Benchmark Suite [6]. Canneal employs an
annealing (SA) algorithm to minimize the routing cost of a
chip design by randomly swapping netlist elements. It was
applied on 100 nets, allowing up to 100 swaps in each step.

The number of executions of each application for every
experiment varied from 2501 to 2504 and has been calculated
using the method presented in [7], setting 99% as a target
confidence level and 1% as the error margin.

A. Experimental Validation in the Absense of Faults

The execution of each application was simulated both with
our tool and the original Gem5 simulator. When simulating
using GemFI we did not inject any faults. We then compared

4



Fig. 4: Different categories of results for the DCT benchmark.
a) A strict correct result b) Relaxed correct result c) SDC d)
The difference between (a),(b) (loss of quality)

the application output from the two experiments, as well as the
statistical results provided by the simulator. For all benchmarks
the results were identical. This indicates that GemFI does not
corrupt the simulation process.

B. Experimental Validation in the Presence of Faults

1) Methodology: As a next step, we launched simulation
campaigns in which applications are injected with faults.
We use a single event upset fault model. Each experiment
injects a flip-bit fault, using a uniform distribution for the
Location, Time and Behavior. Although this methodology does
not necessarily represent the way faults affect systems, it is
ample for the evaluation of the simulator. As mentioned earlier,
GemFI can support any user-provided realistic fault model.

We initially checkpoint after the system boot-up and the
initialization phase of the application under investigation.
For each experiment in a campaign, we restore from the
checkpoint, start simulating in O3 mode and inject the fault.
The simulation continues until the affected instruction commits
or squashes (for example, due to a branch misprediction). At
that point we switch to atomic simulation and after application
termination (normal or crash) we evaluate the quality of the
end-result. When injecting a fault we print information on
the affected assembly instruction. This information is used
postmortem to correlate, either analytically or statistically, the
fault with the simulation result.

The outcome of each experiment can be classified in the fol-
lowing categories: crashed, non propagated, strictly correct re-
sult, correct result and SDC (Silent Data Corruption). Crashed
are experiments which fail to successfully terminate. Non
propagated are experiments in which faults did not manifest
as errors (for example they were inserted in registers, however
the corrupted register was either not used during the execution
of the application or overwritten before the erroneous value
was used). Strictly correct experiments produce results which
are bit-wise identical to those produced by the corresponding

Fig. 5: Application behavior when fault injecting different
architectural components.

error-less execution. Correct experiments produce results that
are within acceptable quality margins, although not bit-wise
identical to those of the error-less execution. The degree of
tolerance is application dependent. For DCT we compare the
produced compressed image with the uncompressed one used
as input. Images with PSNR higher than 30 are regarded
as correct, since typical PSNR values in lossy image and
video compression range between 30 and 50 dB [8]. For the
deblocking filter, outputs with PSNR higher than 80 dB, when
compared with the error-free execution, are characterized as
correct [8]. For PI estimation we accept experiments that have
computed the first two decimal points correctly, since this the
accuracy expected by the error-free execution for the 105 test
points. Since the tolerance on Jacobi is highly dependent on
the application domain, we characterize as correct solutions
that result to the same (bit-exact) output as the golden model,
converging after a potentially different number of iterations.
Correct Canneal executions are those that reduce the total
cost of routing and produce a correct chip. Finally, SDCs are
executions that terminate normally, yet they produce results
outside the acceptable range compared to the results of the
error-free execution. Fig. 4 depicts an example of the different
classes of results.

2) Experimental Results: Fig. 5 depicts the results of the
fault injection campaigns, correlating the Location of the fault
with application behavior. The last column of each chart
summarizes the results for the specific application.

All applications demonstrate their highest resiliency to faults

5



targeting floating point registers. Most applications use a small
subset of these registers, hence there is a low probability
for a fault to affect a live register. Moreover, floating point
registers are typically used to store data and not system
state information or control flow information. Deblocking, a
benchmark with no floating point operations, behaves exactly
as expected, demonstrating 100% strict correctness.

On the other hand, faults on the integer register file result
to higher crash rates. The compiler uses integer registers for
storing important information (global pointer, stack pointer,
frame pointer, return address register). Moreover compiler uses
integer registers for control flow information (loop iterators,
base addresses for memory translation). The integrity of these
registers is crucial. Integer resisters tend to be live during large
spans of the application life. Therefore, any fault affecting
them has a high probability to cause a crash. For example
DCT and Jacobi which are characterized by many memory
accesses and use multi-level loop nests exhibit almost twice
the crash rate compared with other applications.

In order to validate fault injection at the fetch stage,
we correlated the affected bit location and the instruction
type with the end result of the application. The analysis is
ISA dependent; Table I summarizes Alpha instruction for-
mat. Experiments affecting unused bits always resulted into
strict correct results. Faults affecting branch instructions were
validated by checking the simulation statistical information.
For example when inserting a fault into the displacement bits
of the instruction and the branch is not taken the simulation
statistics were the same and the end-result was categorized as
strict correct. Faults affecting the Ra field may cause no error,
should the result of the branch remain the same. Whenever
faults altered the displacement field of memory instructions
the application would crash with a high probability. The same
was observed when the error altered the Ra value of a memory
instruction, since the base address was read by another register.
Finally we observed that, exactly as expected, when faults
were injected into the opcode or the function and the resulting
opcode/function is not implemented the benchmarks always
terminated their execution due to illegal instruction.

A similar analysis was applied for faults inserted in the
selection of registers during the decoding stage. Errors which
affect the selection of the base of load/store instructions would
usually cause a segmentation fault. An interesting observation
is that faults inserted in the decoding stage of the PI algorithm
result to crashes almost at half the probability compared with
the remaining applications, because PI performs almost no
data accesses from memory. Errors in the decoding stage
usually lead to SDCs. This is expected, since operations
are executed with different inputs. Correct results may be
produced only by faults which alter a squashed instruction,
or due to inherent, algorithmic application resiliency.

Faults introduced in the execution stage, which alter mem-
ory access instructions tended to result to crashes, because at
this stage the virtual address of the memory transfer is being
calculated. Faults altering the resulting address usually result
to segmentation violations. The variation between the percent-

age of crashes among different applications is consistent with
the variation of the percentage of memory operations in the
instruction mix. In Knapsack, which makes heavy use of arrays
and pointers 42% of faults in the execution stage result to
crashes. On the other hand, PI evaluation, with almost no data
accesses from memory, suffers almost no crashes. Correct and
strictly correct results when fault injecting in the execution
stage were found to be due to faults that have been masked
during the remaining execution of the application, or faults
that affected the less significant bits of data computations.

Faults altering the result of data loads/stores rarely resulted
to crashes, and when they did it was because the error affected
a store/load of an address. For example, altering the stored or
loaded value of the return address usually led to crash. In
total, errors affecting data store/load operations exhibit high
resiliency, resulting to correct results in 78% of the cases.

Finally faults altering the value of the PC address were
almost always fatal for the affected applications. Correct
results were obtained in the few cases when the corrupted
PC address was close to the correct one. This, in practice,
corresponds to a small forward or backward jump.

Another interesting aspect of the experimental validation
is the correlation of the timing of fault injection to the
effects on the application. Fig. 6 depicts the results from
three fault injections campaigns with interesting trends. The
horizontal axis corresponds to the timing of fault injection
normalized to the application execution time and the vertical
axis corresponds to the fraction of experiments that resulted
to each of the classes of outcomes. Acceptable represents the
union of correct and strictly correct results.

For Monte Carlo PI estimation the time when fault injec-
tion took place appears to be uncorrelated with application
behavior. This is reasonable, since the application iteratively
produces random numbers, which are used to compute the final
result. All iterations affect the final result similarly, therefore
we did not expect different behavior with respect to the timing
of the faults. On the other hand, Knapsack demonstrates a
different behavior. The later the faults are injected, the more
likely the results are acceptable. Faults corrupting data in a
manner that does not result to values which converge towards
the solution will be discarded on the following iteration, after
applying the fitness function. This effect becomes more intense
on each consecutive iteration of the algorithm. In Jacobi, faults
inserted at the beginning of the execution tend to result to
strict correctness. The later the faults are injected, the more the
correct results at the expense of strictly correct. Given that the
input matrix is diagonally dominant, errors which do not alter
important variables of the application (etc. iterators) but alter
input or intermediate data, will have no significant effect to
the results, since the algorithm is bound to converge. However,
more iterations may be needed to achieve convergence.

V. GEMFI PERFORMANCE EVALUATION

In order to evaluate the overhead of GemFI we compare the
execution time for simulated runs of all the aforementioned

6



31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Type
Opcode Ra Rb Unused 0 Function Rc Integer Operate
Opcode Ra Literal 1 Function Rc Integer Operate,Literal
Opcode Ra Rb Function Rc Floating Point Operate
Opcode Ra Rb Displacement Memory Format
Opcode Ra Displacement Branch Format
Opcode Function CALL PAL Format

TABLE I: Alpha instruction formats

Fig. 6: Correlation of the timing of fault injection with the effect on the application.

Fig. 7: GemFI average overhead compared with unmodified
Gem5. The chart also depcits the 95% confidence interval for
each application.

benchmarks on both GemFI and the unmodified Gem5 simu-
lator. We measure and compare simulation time for the part
of the application for which fault injection is active (between
fi activate inst() calls). Despite activating the fault injection
functionality, in this set of experiments we do not actually
inject any faults in the GemFI simulations. Should we inject
faults, the behavior of applications would potentially change,
thus making the comparison between the two tools infeasible.
It should be noted that, despite the fact that no faults are
injected, all GemFI functionality is activated — especially the
modules of GemFI that are executed on each simulated cycle,
thus resulting to most overhead — apart from the last step
of the process described in Fig. 2, the fault injection itself.
However, the actual fault injection step would, in any case, be
activated only once, with negligible overhead. Moreover, since
no faults are injected, there are no opportunities to switch to
atomic simple mode after fault manifestation, therefore the
simulation is performed in the high-overhead O3 CPU model.

Fig. 7 depicts the experimental results, which can be con-
sidered as a worst-case overhead scenario for GemFI. The
overhead varies from -0.1% to 3.3%. It is mainly dependent
on the number of instructions simulated with fault injection
enabled. The overhead introduced by GemFI clearly is mini-
mal. For PI estimation GemFI appears to perform better than

Fig. 8: Effect of GemFI optimizations on the execution time
of fault injection campaigns (y-axis in logarithmic scale).

Gem5, however this observation is not statistically significant.
Using the checkpointing methodology presented in

Sec. III-D, GemFI is able to significantly reduce the time
for executing simulation campaigns. Fig. 8 summarizes the
simulation time for the campaigns discussed in Sec. IV, with
and without using the checkpointing capability to fast-forward
the simulation to the point where fault injection is activated.
The benefit from checkpointing is a 3x to 244x (64.5x on
average) speedup with respect to the non fast-forwarded
execution of the campaign. The speedup is mainly dependent
on the ratio of the execution time spent for each application
on the pre- and post-checkpoint code.

The third set of bars in Fig. 8 depicts the execution time of
the simulation campaigns on a network of 27 workstations, us-
ing the meta-simulation infrastructure discussed in Sec. III-E.
Each workstation is equipped with quad core Intel Xeon E5520
CPUs at 2.27 Ghz and 8 GB RAM each. On each workstation
we execute simultaneously 4 experiments (simulations). The
additional speedup, compared with execution on a simple
system with checkpoint-based fast forwarding, is consistent
with the number of simultaneously executed experiments (in
all cases approximately 108x).

VI. RELATED WORK

The impacts of faults have been evaluated by several re-
search groups. Different approaches are used towards injecting

7



faults such as software fault injection, simulation fault injec-
tion and physical level fault injection.

RIFFLE [9] and MESSALINE [10] inject faults at the
pin level, while FIAT [11] and FERRARI [11] implement
software-level fault injection. Simulation based fault injection
has the ability to model complex system with great accuracy
however, ensuring that the simulated models are realistic and
restraining simulation time are significant challenges. Exam-
ples of fault simulators are MEFISTO [12] and VERIFY [13].
MEFISTO inserts faults into VHDL models. This method
provides high accuracy in both the location and the timing
of the fault, as well as high validity of results. The drawback
of using MEFISTO is the overhead of the system evaluation;
the system is based in mutants [14], which is static information
and the model has to be recompiled for each experiment.
In VERIFY, another VHDL simulation-based fault injection
toolset, basic logic gates (AND, OR, etc.) have been extended
with extra signals, allowing to alter their behavior based on
these external signals. Although the methodology is quite
efficient in simulating different fault models, recompilation of
the framework is required, introducing significant overhead.

Czeck and Siewiorek [15] performed a similar analysis
through fault injection using bit-flip faults in their simula-
tion model. However, their approach is limited to a specific
configuration. Gaisler [16] injected faults into the register file
of a SPARC V8 simulator, while enhancing the register file
fault tolerance by adding ECC bits on each register. In [17]
fault injection is performed on simulated processor similar to
ALPHA 21264 or AMD ATHLON and the system tolerance
is enhanced by providing extra hardware support.

In our work we provide a tool which is based on a broadly
used reconfigurable simulator (Gem5). The purpose of our tool
is to support any arbitrary fault model, by allowing the user
to describe the faults to an input file. Moreover to the best of
our knowledge GemFI is the first infrastructure that can target
specific applications areas, while minimizing the changes to
the original source code of the application under test.

VII. CONCLUSION

In this paper we introduced GemFI, a new simulator en-
abling fault injection of transient, intermittent and permanent
faults. GemFI simulates unreliable environments in full sys-
tem, cycle accurate mode. It is not limited to specific fault
models, but is easily extensible and facilitates support of future
fault models. Moreover, GemFI features such as checkpointing
allow the execution of large-scale fault injection campaigns.

In order to validate GemFI and evaluate its performance, we
executed a number of fault injection campaigns on different
applications. We found that the outcome of fault injection cam-
paigns was the expected one, according to the characteristics
of each application. Moreover, the overhead of GemFI over
Gem5 proved minimal, whereas the performance optimizations
in GemFI have a profound effect on the execution time of
simulation campaigns.

In the future, we plan to extend GemFI with fault injection
capabilities outside the processor, namely on the processor

/ memory interconnect, as well as on external I/O devices.
Moreover, we plan to enhance it with realistic fault models,
associating the supply voltage (Vdd) with the error rate in
different system components. Our goal is to study the limits
of aggressively reducing power consumption at the expense of
correctness, yet within the error tolerance of applications and
the software stack.

ACKNOWLEDGMENT

This work has been partially supported by the EC within the
7th Framework Program under the FET-Open grant agreement
SCoRPiO, grant number 323872.

REFERENCES

[1] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu,
J. Hestness, D. R. Hower, T. Krishna, S. Sardashti, R. Sen, K. Sewell,
M. Shoaib, N. Vaish, M. D. Hill, and D. A. Wood, “The Gem5
Simulator,” ACM SIGARCH Computer Architecture News, 2011.

[2] C. R. Yount and D. P. Siewiorek, “A methodology for the rapid injection
of transient hardware errors,” IEEE Trans. on Computers, 1996.

[3] J. Ansel, K. Arya, and G. Cooperman, “DMTCP: Transparent Check-
pointing for Cluster Computations and the Desktop Proc,” in Proc. of
the IEEE International Symposium on Parallel & Distributed Processing
(IPDPS), 2009.

[4] A. Skodras, C. Christopoulos, and T. Ebrahimi, “The JPEG 2000
still image compression standard,” Proc. of the IEEE International
Symposium on Signal Processing (ICSP), 2001.

[5] L. Fan, S. Ma, and F. Wu, “Overview of AVS video standard,” in Proc.
of the IEEE International Conference on Multimedia and Expo (ICME),
2004.

[6] C. Bienia and K. Li, “PARSEC 2.0: A New Benchmark Suite for
Chip-Multiprocessors,” in Proc. of the Annual Workshop on Modeling,
Benchmarking and Simulation (MoBS), 2009.

[7] R. Leveugle, A. Calvez, P. Maistri, and P. Vanhauwaert, “Statistical fault
injection: quantified error and confidence,” in Proc. of the Conference
& Exhibition on Design, Automation & Test in Europe (DATE), 2009.

[8] S. T. Welstead, Fractal and wavelet image compression techniques.
SPIE Optical Engineering Press, 1999.

[9] H. Madeira, M. Rela, F. Moreira, and J. G. Silva, “RIFLE: A general
purpose pin-level fault injector,” in Proc. of the European Dependable
Computing Conference (EDCC), 1994.

[10] J. Arlat, M. Aguera, L. Amat, Y. Crouzet, J.-C. Fabre, J.-C. Laprie,
E. Martins, and D. Powell, “Fault Injection for Dependability Validation:
A Methodology and Some Applications,” IEEE Trans. on Software
Engineering, 1990.

[11] J. H. Barton, E. W. Czeck, Z. Z. Segall, and D. P. Siewiorek, “Fault
Injection Experiments Using FIAT,” IEEE Trans. on Computers, 1990.

[12] E. Jenn, J. Arlat, M. Rimn, J. Ohlsson, and J. Karlsson, “Fault Injection
into VHDL Models: The MEFISTO Tool,” in Proc. of the Symposium
on Fault-Tolerant Computing (FTCS), 1994.

[13] V. Sieh, O. Tschche, and F. Balbach, “VERIFY: Evaluation of Reliability
Using VHDL-Models with Embedded Fault Descriptions,” in Proc. of
the Symposium on Fault-Tolerant Computing (FTCS), 1997.

[14] M. Rimén, J. Ohlsson, J. Karlsson, E. Jenn, and J. Arlat, “Design
guidelines of a VHDL-based simulation tool for the validation of fault
tolerance,” ESPRIT Basic Research Project (PDCS-2), Tech. Rep., 1993.

[15] E. W. Czeck and D. P. Siewiorek, “Effects of transient gate-level faults
on program behavior,” in Proc. of the International Symposium on Fault-
Tolerant Computing (FTCS), 1990.

[16] J. Gaisler, “A Portable and Fault-Tolerant Microprocessor Based on the
SPARC V8 Architecture.” in Proc. of the International Conference on
Dependable Systems and Networks (DSN), 2002.

[17] N. J. Wang, J. Quek, T. M. Rafacz, and S. J. Patel, “Characterizing the
Effects of Transient Faults on a High-Performance Processor Pipeline,”
in Proc. of the International Conference on Dependable Systems and
Networks (DSN), 2004.

8


